Possible Solutions

Triangle $A B C$ is similar to triangle $C D E$.

Explain why the slope of the hypotenuse is the same for both right triangles.

Possible Solution 1

- Make ratios of the vertical change to the horizontal change for each of the triangles. If these ratios are the same, the two triangles have the same slope.

$$
\begin{gathered}
\frac{A B}{B C}=\frac{-3}{2} \\
\frac{C D}{E F}=\frac{-6}{4}=\frac{-3}{2}
\end{gathered}
$$

- Because the ratio of the vertical change compared to the horizontal change for each right triangle is the same, the two triangles have the same slope.

Possible Solution 2

- Slope is frequently talked about as $\frac{\text { rise }}{\text { run }}$. This means to count the number of spaces for the vertical change and compare that to the horizontal change in the points.
- For $\triangle A B C$ this ratio is $\frac{-3}{2}$.
- For $\triangle C D E$ this ratio is $\frac{-6}{4}=\frac{-3}{2}$.
- Because the ratio of the vertical change compared to the horizontal change for each right triangle is the same, the two triangles have the same slope.

Possible Solution 3

- The formula for slope is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, this could be used to verify the slope of each hypotenuse is the same.
- For $\triangle A B C$ A(-3, 6); C(-1, 3)

$$
\frac{3-6}{-1-(-3)}=\frac{-3}{2}
$$

- For $\triangle C D E C(-1,3) ; \mathrm{E}(3,-3)$

$$
\frac{-3-3}{3-(-1)}=\frac{-6}{2}=\frac{-3}{2}
$$

- The two triangles have the same slope when the slope formula is applied to the hypotenuse.

